Inequalities for symmetric means
نویسندگان
چکیده
We study Muirhead-type generalizations of families of inequalities due to Newton, Maclaurin and others. Each family is defined in terms of a commonly used basis of the ring of symmetric functions in n variables. Inequalities corresponding to elementary symmetric functions and power sum symmetric functions are characterized by the same simple poset which generalizes the majorization order. Some analogous results are also obtained for the Schur, homogeneous, and monomial cases.
منابع مشابه
Symmetric Rogers-Hölder's inequalities on diamond-α calculus
We present symmetric Rogers--Hölder's inequalities on time scales when $frac{1}{p}+frac{1}{q}+frac{1}{r}=0$ and $frac{r}{p}+frac{r}{q}$ is not necessarily equal to $1$ where $p,$ $q$ and $r$ are nonzero real numbers.
متن کاملA Monotonicity Property of Ratios of Symmetric Homogeneous Means
We study a certain monotonicity property of ratios of means, which we call a strong inequality. These strong inequalities were recently shown to be related to the so-called relative metric. We also use the strong inequalities to derive new ordinary inequalities. The means studied are the extended mean value of Stolarsky, Gini’s mean and Seiffert’s mean.
متن کاملSymmetric Polynomials and Symmetric Mean Inequalities
We prove generalized arithmetic-geometric mean inequalities for quasi-means arising from symmetric polynomials. The inequalities are satisfied by all positive, homogeneous symmetric polynomials, as well as a certain family of nonhomogeneous polynomials; this family allows us to prove the following combinatorial result for marked square grids. Suppose that the cells of a n × n checkerboard are e...
متن کاملBernstein type’s concentration inequalities for symmetric Markov processes
Using the method of transportation-information inequality introduced in [28], we establish Bernstein type’s concentration inequalities for empirical means 1 t ∫ t 0 g(Xs)ds where g is a unbounded observable of the symmetric Markov process (Xt). Three approaches are proposed : functional inequalities approach ; Lyapunov function method ; and an approach through the Lipschitzian norm of the solut...
متن کاملA One–parameter Family of Bivariate Means
A one-parameter family of bivariate means is introduced. Members of the new family of means are derived from a bivariate symmetric mean. It is shown that new means are symmetric in their variables. Several inequalities involving parametric versions of two Seiffert means, the Neuman-Sándor mean, and the logarithmic means are obtained. It is shown that the last four means belong to the family of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 32 شماره
صفحات -
تاریخ انتشار 2011